Coordination of networked systems on digraphs with multiple leaders via pinning control
Gang Chen and
Frank Lewis
International Journal of Systems Science, 2011, vol. 43, issue 2, 368-384
Abstract:
It is well known that achieving consensus among a group of multi-vehicle systems by local distributed control is feasible if and only if all nodes in the communication digraph are reachable from a single (root) node. In this article, we take into account a more general case that the communication digraph of the networked multi-vehicle systems is weakly connected and has two or more zero-in-degree and strongly connected subgraphs, i.e. there are two or more leader groups. Based on the pinning control strategy, the feasibility problem of achieving second-order controlled consensus is studied. At first, a necessary and sufficient condition is given when the topology is fixed. Then the method to design the controller and the rule to choose the pinned vehicles are discussed. The proposed approach allows us to extend several existing results for undirected graphs to directed balanced graphs. A sufficient condition is proposed in the case where the coupling topology is variable. As an illustrative example, a second-order controlled consensus scheme is applied to coordinate the movement of networked multiple mobile robots.
Date: 2011
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2010.502598 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:43:y:2011:i:2:p:368-384
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2010.502598
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().