EconPapers    
Economics at your fingertips  
 

A low-cost evolutionary algorithm for the unit commitment problem considering probabilistic unit outages

V.G. Asouti and K.C. Giannakoglou

International Journal of Systems Science, 2012, vol. 43, issue 7, 1322-1335

Abstract: This article presents a solution method to the unit commitment problem with probabilistic unit failures and repairs, which is based on evolutionary algorithms and Monte Carlo simulations. Regarding the latter, thousands of availability–unavailability trial time patterns along the scheduling horizon are generated. The objective function to be minimised is the expected total operating cost, computed after adapting any candidate solution, i.e. any series of generating/non-generating (ON/OFF) unit states, to the availability–unavailability patterns and performing evaluations by considering fuel, start-up and shutdown costs as well as the cost for buying electricity from external resources, if necessary. The proposed method introduces a new efficient chromosome representation: the decision variables are integer IDs corresponding to the binary-to-decimal converted ON/OFF (1/0) scenarios that cover the demand in each hour. In contrast to previous methods using binary strings as chromosomes, the new chromosome must be penalised only if any of the constraints regarding start-up, shutdown and ramp times cannot be met, chromosome repair is avoided and, consequently, the dispatch problems are solved once in the preparatory phase instead of during the evolution. For all these reasons, with or without probabilistic outages, the proposed algorithm has much lower CPU cost. In addition, if probabilistic outages are taken into account, a hierarchical evaluation scheme offers extra noticeable gain in CPU cost: the population members are approximately pre-evaluated using a small ‘representative’ set of the Monte Carlo simulations and only a few top population members undergo evaluations through the full Monte Carlo simulations. The hierarchical scheme makes the proposed method about one order of magnitude faster than its conventional counterpart.

Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2011.604742 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:43:y:2012:i:7:p:1322-1335

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2011.604742

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:43:y:2012:i:7:p:1322-1335