State estimator for multisensor systems with irregular sampling and time-varying delays
I. Peñarrocha,
R. Sanchis and
J.A. Romero
International Journal of Systems Science, 2012, vol. 43, issue 8, 1441-1453
Abstract:
This article addresses the state estimation in linear time-varying systems with several sensors with different availability, randomly sampled in time and whose measurements have a time-varying delay. The approach is based on a modification of the Kalman filter with the negative-time measurement update strategy, avoiding running back the full standard Kalman filter, the use of full augmented order models or the use of reorganisation techniques, leading to a lower implementation cost algorithm. The update equations are run every time a new measurement is available, independently of the time when it was taken. The approach is useful for networked control systems, systems with long delays and scarce measurements and for out-of-sequence measurements.
Date: 2012
References: Add references at CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2011.625482 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:43:y:2012:i:8:p:1441-1453
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2011.625482
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().