Dynamic output feedback control for affine fuzzy systems
Huimin Wang and
Guang-Hong Yang
International Journal of Systems Science, 2013, vol. 44, issue 6, 1102-1111
Abstract:
This article investigates the problem of designing H∞ dynamic output feedback controllers for nonlinear systems, which are described by affine fuzzy models. The system outputs have been chosen as premise variables, which can guarantee that the plant and the controller always switch to the same region. By using a piecewise Lyapunov function and adding slack matrix variables, a piecewise-affine dynamic output feedback controller design method is obtained in the formulation of linear matrix inequalities (LMIs), which can be efficiently solved numerically. In contrast to the existing work, the proposed approach needs less LMI constraints and leads to less conservatism. Finally, numerical examples illustrate the effectiveness of the new result.
Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2011.652231 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:44:y:2013:i:6:p:1102-1111
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2011.652231
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().