EconPapers    
Economics at your fingertips  
 

Multiple proportion case-basing driven CBRE and its application in the evaluation of possible failure of firms

Hui Li, Diego Andina and Jie Sun

International Journal of Systems Science, 2013, vol. 44, issue 8, 1409-1425

Abstract: Case-based reasoning (CBR) is a unique tool for the evaluation of possible failure of firms (EOPFOF) for its eases of interpretation and implementation. Ensemble computing, a variation of group decision in society, provides a potential means of improving predictive performance of CBR-based EOPFOF. This research aims to integrate bagging and proportion case-basing with CBR to generate a method of proportion bagging CBR for EOPFOF. Diverse multiple case bases are first produced by multiple case-basing, in which a volume parameter is introduced to control the size of each case base. Then, the classic case retrieval algorithm is implemented to generate diverse member CBR predictors. Majority voting, the most frequently used mechanism in ensemble computing, is finally used to aggregate outputs of member CBR predictors in order to produce final prediction of the CBR ensemble. In an empirical experiment, we statistically validated the results of the CBR ensemble from multiple case bases by comparing them with those of multivariate discriminant analysis, logistic regression, classic CBR, the best member CBR predictor and bagging CBR ensemble. The results from Chinese EOPFOF prior to 3 years indicate that the new CBR ensemble, which significantly improved CBR's predictive ability, outperformed all the comparative methods.

Date: 2013
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2012.659686 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:44:y:2013:i:8:p:1409-1425

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2012.659686

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:44:y:2013:i:8:p:1409-1425