An application of locally linear model tree algorithm with combination of feature selection in credit scoring
Mohammad Siami,
Mohammad Reza Gholamian and
Javad Basiri
International Journal of Systems Science, 2014, vol. 45, issue 10, 2213-2222
Abstract:
Nowadays, credit scoring is one of the most important topics in the banking sector. Credit scoring models have been widely used to facilitate the process of credit assessing. In this paper, an application of the locally linear model tree algorithm (LOLIMOT) was experimented to evaluate the superiority of its performance to predict the customer's credit status. The algorithm is improved with an aim of adjustment by credit scoring domain by means of data fusion and feature selection techniques. Two real world credit data sets – Australian and German – from UCI machine learning database were selected to demonstrate the performance of our new classifier. The analytical results indicate that the improved LOLIMOT significantly increase the prediction accuracy.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2013.767395 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:45:y:2014:i:10:p:2213-2222
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2013.767395
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().