An outlier mining algorithm based on constrained concept lattice
Jifu Zhang,
Sulan Zhang,
Kai H. Chang and
Xiao Qin
International Journal of Systems Science, 2014, vol. 45, issue 5, 1170-1179
Abstract:
Traditional outlier mining methods identify outliers from a global point of view. These methods are inefficient to find locally biased data points (outliers) in low dimensional subspaces. Constrained concept lattices can be used as an effective formal tool for data analysis because constrained concept lattices have the characteristics of high constructing efficiency, practicability and pertinency. In this paper, we propose an outlier mining algorithm that treats the intent of any constrained concept lattice node as a subspace. We introduce sparsity and density coefficients to measure outliers in low dimensional subspaces. The intent of any constrained concept lattice node is regarded as a subspace, and sparsity subspaces are searched by traversing the constrained concept lattice according to a sparsity coefficient threshold. If the intent of any father node of the sparsity subspace is a density subspace according to a density coefficient threshold, then objects contained in the extent of the sparsity subspace node are considered as bias data points or outliers. Our experimental results show that the proposed algorithm performs very well for high red-shift spectral data sets.
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2012.745029 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:45:y:2014:i:5:p:1170-1179
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2012.745029
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().