A stochastic node-failure network with individual tolerable error rate at multiple sinks
Cheng-Fu Huang and
Yi-Kuei Lin
International Journal of Systems Science, 2014, vol. 45, issue 5, 935-946
Abstract:
Many enterprises consider several criteria during data transmission such as availability, delay, loss, and out-of-order packets from the service level agreements (SLAs) point of view. Hence internet service providers and customers are gradually focusing on tolerable error rate in transmission process. The internet service provider should provide the specific demand and keep a certain transmission error rate by their SLAs to each customer. This paper is mainly to evaluate the system reliability that the demand can be fulfilled under the tolerable error rate at all sinks by addressing a stochastic node-failure network (SNFN), in which each component (edge or node) has several capacities and a transmission error rate. An efficient algorithm is first proposed to generate all lower boundary points, the minimal capacity vectors satisfying demand and tolerable error rate for all sinks. Then the system reliability can be computed in terms of such points by applying recursive sum of disjoint products. A benchmark network and a practical network in the United States are demonstrated to illustrate the utility of the proposed algorithm. The computational complexity of the proposed algorithm is also analyzed.
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2012.743053 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:45:y:2014:i:5:p:935-946
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2012.743053
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().