Discrete-time filtering for nonlinear polynomial systems over linear observations
M. Hernandez-Gonzalez and
M.V. Basin
International Journal of Systems Science, 2014, vol. 45, issue 7, 1461-1472
Abstract:
This paper designs a discrete-time filter for nonlinear polynomial systems driven by additive white Gaussian noises over linear observations. The solution is obtained by computing the time-update and measurement-update equations for the state estimate and the error covariance matrix. A closed form of this filter is obtained by expressing the conditional expectations of polynomial terms as functions of the estimate and the error covariance. As a particular case, a third-degree polynomial is considered to obtain the finite-dimensional filtering equations. Numerical simulations are performed for a third-degree polynomial system and an induction motor model. Performance of the designed filter is compared with the extended Kalman one to verify its effectiveness.
Date: 2014
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2013.876681 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:45:y:2014:i:7:p:1461-1472
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2013.876681
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().