Robust stabilisation of discrete-time time-varying linear systems with Markovian switching and nonlinear parametric uncertainties
Vasile Dragan
International Journal of Systems Science, 2014, vol. 45, issue 7, 1508-1517
Abstract:
In this paper, the problem of the robustness of the stability of a discrete-time linear stochastic system is addressed. The nominal plant is described by a discrete-time time-varying linear system subject to random jumping according with a non-homogeneous Markov chain with a finite number of states. The class of admissible uncertainties consists of multiplicative white noise type perturbations with unknown intensity. It is assumed that the intensity of white noise type perturbations is modelled by unknown nonlinear functions subject to linear growth conditions. The class of admissible controls consists of stabilising state feedback control laws. We show that the best robustness performance is achieved by the stability provided by a state feedback design based on the stabilising solution of a suitable discrete-time Riccati-type equation.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2013.860643 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:45:y:2014:i:7:p:1508-1517
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2013.860643
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().