Finite horizon optimal control of non-linear discrete-time switched systems using adaptive dynamic programming with ε-error bound
Chunbin Qin,
Huaguang Zhang,
Yanhong Luo and
Binrui Wang
International Journal of Systems Science, 2014, vol. 45, issue 8, 1683-1693
Abstract:
In this paper, we aim to solve the finite-horizon optimal control problem for a class of non-linear discrete-time switched systems using adaptive dynamic programming(ADP) algorithm. A new ε-optimal control scheme based on the iterative ADP algorithm is presented which makes the value function converge iteratively to the greatest lower bound of all value function indices within an error according to ε within finite time. Two neural networks are used as parametric structures to implement the iterative ADP algorithm with ε-error bound, which aim at approximating the value function and the control policy, respectively. And then, the optimal control policy is obtained. Finally, a simulation example is included to illustrate the applicability of the proposed method.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2012.748945 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:45:y:2014:i:8:p:1683-1693
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2012.748945
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().