Output mini-max control for polynomial systems: analysis and applications
Manuel Jiménez-Lizárraga,
Michael V. Basin,
Victoria Celeste Rodríguez Carreón and
Pablo Cesar Rodríguez Ramírez
International Journal of Systems Science, 2014, vol. 45, issue 9, 1880-1891
Abstract:
This paper presents a solution to a robust optimal regulation problem for a nonlinear polynomial system affected by parametric and matched uncertainties, which is based only on partial state information. The parameters describing the dynamics of the nonlinear polynomial plant depend on a vector of unknown parameters, which belongs to a finite parametric set, and the application of a certain control input is associated with the worst or least favourable value of the unknown parameter. A high-order sliding mode state reconstructor is designed for the nonlinear plant in such a way that the previously designed control can be applied for a system with incomplete information. Additionally, the matched uncertainty is also compensated by means of the same output-based regulator. The obtained algorithm is applied to control an uncertain nonlinear inductor circuit of the third order and a mechanical pendulum of the third order, successfully verifying the effectiveness of the developed approach.
Date: 2014
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2012.757385 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:45:y:2014:i:9:p:1880-1891
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2012.757385
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().