On ℓ and gains for positive systems with bounded time-varying delays
Jun Shen and
James Lam
International Journal of Systems Science, 2015, vol. 46, issue 11, 1953-1960
Abstract:
This paper is devoted to the analysis of the ℓ∞ and L∞ gains for positive linear systems with interval time-varying delays. Through exploiting the monotonicity of the state trajectory, we first prove that for positive systems with constant delays, the ℓ∞ and L∞ gains are fully governed by the system matrices but independent of the delay size. Moreover, for positive systems with bounded time-varying delays, by comparing with the nominal systems with constant delays, it turns out that the ℓ∞ and L∞ gains are exactly the same as that of the constant delay systems. The results in this paper reveal that the ℓ∞ and L∞ gains of positive linear systems are not sensitive to the magnitude of time delays and hence the computation of ℓ∞ and L∞ gains of positive systems with bounded time-varying delays can be reduced to computing the ℓ∞ and L∞ gains of the corresponding delay-free systems. Both continuous-time and discrete-time cases are considered in this paper.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2013.843217 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:46:y:2015:i:11:p:1953-1960
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2013.843217
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().