Optimal Kullback–Leibler approximation of Markov chains via nuclear norm regularisation
Kun Deng and
Dayu Huang
International Journal of Systems Science, 2015, vol. 46, issue 11, 2029-2047
Abstract:
This paper is concerned with model reduction for Markov chain models. The goal is to obtain a low-rank approximation to the original Markov chain. The Kullback–Leibler divergence rate is used to measure the similarity between two Markov chains; the nuclear norm is used to approximate the rank function. A nuclear-norm regularised optimisation problem is formulated to approximately find the optimal low-rank approximation. The proposed regularised problem is analysed and performance bounds are obtained through the convex analysis. An iterative fixed point algorithm is developed based on the proximal splitting technique to compute the optimal solutions. The effectiveness of this approach is illustrated via numerical examples.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2013.844284 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:46:y:2015:i:11:p:2029-2047
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2013.844284
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().