EconPapers    
Economics at your fingertips  
 

Distributed Kalman filtering via node selection in heterogeneous sensor networks

Donato Di Paola, Antonio Petitti and Alessandro Rizzo

International Journal of Systems Science, 2015, vol. 46, issue 14, 2572-2583

Abstract: In this paper, we propose a strategy for distributed Kalman filtering over sensor networks, based on node selection, rather than on sensor fusion. The presented approach is particularly suitable when sensors with limited sensing capability are considered. In this case, strategies based on sensor fusion may exhibit poor results, as several unreliable measurements may be included in the fusion process. On the other hand, our approach implements a distributed strategy able to select only the node with the most accurate estimate and to propagate it through the whole network in finite time. The algorithm is based on the definition of a metric of the estimate accuracy, and on the application of an agreement protocol based on max-consensus. We prove the convergence, in finite time, of all the local estimates to the most accurate one at each discrete iteration, as well as the equivalence with a centralised Kalman filter with multiple measurements, evolving according to a state-dependent switching dynamics. An application of the algorithm to the problem of distributed target tracking over a network of heterogeneous range-bearing sensors is shown. Simulation results and a comparison with two distributed Kalman filtering strategies based on sensor fusion confirm the suitability of the approach.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2013.873836 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:46:y:2015:i:14:p:2572-2583

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2013.873836

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:46:y:2015:i:14:p:2572-2583