PID position domain control for contour tracking
P.R. Ouyang,
V. Pano and
T. Dam
International Journal of Systems Science, 2015, vol. 46, issue 1, 111-124
Abstract:
Contour error reduction for modern machining processes is an important concern in multi-axis contour tracking applications in order to ensure the quality of final products. Many control methods were developed in time domain to deal with contour tracking problems, and a proportional–derivative (PD) position domain control (PDC) was also proposed by the authors. It is well known that proportional–integral–differential (PID) control is the most popular control in applications of control theory. In this paper, a PID PDC is proposed for reducing contour tracking errors and improving contour tracking performances. To determine proper control gains, system stability analysis is conducted for the proposed PDC. Several experiments are conducted to evaluate the performance of the developed approach and are compared with the PID time domain control (TDC) and the cross-coupled control. Different control gains are used in the simulations to explore the robustness of PID PDC. Comparison results demonstrate the effectiveness and good contour performances of PID PDC for contour tracking applications.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2013.775385 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:46:y:2015:i:1:p:111-124
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2013.775385
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().