EconPapers    
Economics at your fingertips  
 

Delay-dependent exponential state estimators for stochastic neural networks of neutral type with both discrete and distributed delays

Tong Wang, Yongsheng Ding, Lei Zhang and Kuangrong Hao

International Journal of Systems Science, 2015, vol. 46, issue 4, 670-680

Abstract: This paper considered the state estimation for stochastic neural networks of neutral type with discrete and distributed delays. By using available output measurements, the state estimator can approximate the neuron states, and the asymptotic property of the state error is mean square exponential stable and also almost surely exponential stable in the presence of discrete and distributed delays. Under the Lipschitz assumptions for the activation functions and the measurement nonlinearity, a delay-dependent linear matrix inequality (LMI) criterion is proposed to guarantee the existence of the desired estimators by constructing an appropriate Lyapunov-Krasovskii function. It is shown that the existence conditions and the explicit expression of the state estimator can be parameterised in terms of the solution to a LMI. Finally, two numerical examples are presented to demonstrate the validity of the theoretical results and show that the theorem can provide less conservative conditions.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2013.794908 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:46:y:2015:i:4:p:670-680

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2013.794908

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:46:y:2015:i:4:p:670-680