Distributed robust control for synchronised tracking of networked Euler–Lagrange systems
Zi-Jiang Yang,
Yoshiyuki Shibuya and
Pan Qin
International Journal of Systems Science, 2015, vol. 46, issue 4, 720-732
Abstract:
In this paper, we propose a distributed robust control method for synchronised tracking of networked Euler–Lagrange systems, where the time-varying reference trajectory is sent to only a subset of the agents. It is assumed that the agents can exchange information with their local neighbours on a bidirectionally connected communication graph. In the local controller equipped in each generalised coordinate of the agents, a disturbance observer is introduced to compensate for the low-passed-coupled uncertainties, and a sliding mode control term is employed to handle the uncertainties that the disturbance observer cannot compensate for sufficiently. By some damping terms, the boundedness of the signals of the overall networked nonlinear systems is first ensured. Then we show how the disturbance observer and sliding mode control term play in a cooperative way in each local generalised coordinate to achieve an excellent synchronised tracking performance. Simulation results are provided to support the theoretical results.
Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2013.797036 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:46:y:2015:i:4:p:720-732
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2013.797036
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().