EconPapers    
Economics at your fingertips  
 

A fast approach for detection of erythemato-squamous diseases based on extreme learning machine with maximum relevance minimum redundancy feature selection

Tong Liu, Liang Hu, Chao Ma, Zhi-Yan Wang and Hui-Ling Chen

International Journal of Systems Science, 2015, vol. 46, issue 5, 919-931

Abstract: In this paper, a novel hybrid method, which integrates an effective filter maximum relevance minimum redundancy (MRMR) and a fast classifier extreme learning machine (ELM), has been introduced for diagnosing erythemato-squamous (ES) diseases. In the proposed method, MRMR is employed as a feature selection tool for dimensionality reduction in order to further improve the diagnostic accuracy of the ELM classifier. The impact of the type of activation functions, the number of hidden neurons and the size of the feature subsets on the performance of ELM have been investigated in detail. The effectiveness of the proposed method has been rigorously evaluated against the ES disease dataset, a benchmark dataset, from UCI machine learning database in terms of classification accuracy. Experimental results have demonstrated that our method has achieved the best classification accuracy of 98.89% and an average accuracy of 98.55% via 10-fold cross-validation technique. The proposed method might serve as a new candidate of powerful methods for diagnosing ES diseases.

Date: 2015
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2013.801096 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:46:y:2015:i:5:p:919-931

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2013.801096

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:46:y:2015:i:5:p:919-931