EconPapers    
Economics at your fingertips  
 

Consensus-based distributed optimisation of multi-agent networks via a two level subgradient-proximal algorithm

Bin Hu, Zhi-Hong Guan, Rui-Quan Liao, Ding-Xue Zhang and Gui-Lin Zheng

International Journal of Systems Science, 2015, vol. 46, issue 7, 1307-1318

Abstract: This paper presents a consensus-based stochastic subgradient algorithm for multi-agent networks to minimise multiple convex but not necessarily differential objective functions, subject to an intersection set of multiple closed convex constraint sets. Compared with the existing results an alternative subgradient algorithm is first introduced based on two level subgradient iterations, where the first level is to minimise the component functions, and the second to enforce the iterates not oscillate from the constraint set wildly. In addition, a distributed consensus-based type of the proposed subgradient algorithm is constructed within the framework of multi-agent networks for the case when the iteration index of local objective functions and local constraint sets is not homologous. Detailed convergence analysis of the proposed algorithms is established using matrix theories and super-martingale convergence theorem. In addition, a pre-step convergence factor is obtained in this study to characterise the distance between the iterations and the optimal set, while some existing literatures only present a convergence work. Simulation results are given to demonstrate the effectiveness of the developed theoretical results.

Date: 2015
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2013.822122 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:46:y:2015:i:7:p:1307-1318

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2013.822122

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:46:y:2015:i:7:p:1307-1318