Dual scheduling and quantised control for networked control systems with communication constraints
Hui Lu and
Chuan Zhou
International Journal of Systems Science, 2016, vol. 47, issue 10, 2370-2381
Abstract:
A novel integrated design scheme of average dwell time scheduling strategy, dynamic bandwidth allocation policy and quantised control for a collection of networked control systems (NCSs) with time delay and communication constraints is proposed in this paper. A scheduling policy is presented to accommodate the limitation of communication capacity which depends on the convergence rate of closed-loop system and divergence rate of open-loop plant. Linear programming technique is adopted to dynamically allocate bit rate for each node and the strategy is used to make trade-offs between the network utilisation and the control performance which provides an effective way of optimising the quality of control (QoC) and the quality of service (QoS) for NCSs. Mid-tread uniform quantisers update the quantisation rules according to the assignment of the bit rate and convert the quantised state into a kind of input saturation with bounded disturbances. Taking into account the effect of dual scheduling strategy and quantisation, the NCSs are modelled as discrete-time switched systems with bounded disturbances. Furthermore, a scheduling and quantised feedback control co-design procedure is proposed for the simultaneous stabilisation of the collection of networked subsystems. Finally, a simulation example is given to illustrate the effectiveness of the proposed method.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2014.994581 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:10:p:2370-2381
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2014.994581
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().