EconPapers    
Economics at your fingertips  
 

Lévy flight artificial bee colony algorithm

Harish Sharma, Jagdish Chand Bansal, K. V. Arya and Xin-She Yang

International Journal of Systems Science, 2016, vol. 47, issue 11, 2652-2670

Abstract: Artificial bee colony (ABC) optimisation algorithm is a relatively simple and recent population-based probabilistic approach for global optimisation. The solution search equation of ABC is significantly influenced by a random quantity which helps in exploration at the cost of exploitation of the search space. In the ABC, there is a high chance to skip the true solution due to its large step sizes. In order to balance between diversity and convergence in the ABC, a Lévy flight inspired search strategy is proposed and integrated with ABC. The proposed strategy is named as Lévy Flight ABC (LFABC) has both the local and global search capability simultaneously and can be achieved by tuning the Lévy flight parameters and thus automatically tuning the step sizes. In the LFABC, new solutions are generated around the best solution and it helps to enhance the exploitation capability of ABC. Furthermore, to improve the exploration capability, the numbers of scout bees are increased. The experiments on 20 test problems of different complexities and five real-world engineering optimisation problems show that the proposed strategy outperforms the basic ABC and recent variants of ABC, namely, Gbest-guided ABC, best-so-far ABC and modified ABC in most of the experiments.

Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2015.1010748 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:11:p:2652-2670

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2015.1010748

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:47:y:2016:i:11:p:2652-2670