A new algorithm for importance analysis of the inputs with distribution parameter uncertainty
Luyi Li and
Zhenzhou Lu
International Journal of Systems Science, 2016, vol. 47, issue 13, 3065-3077
Abstract:
Importance analysis is aimed at finding the contributions by the inputs to the uncertainty in a model output. For structural systems involving inputs with distribution parameter uncertainty, the contributions by the inputs to the output uncertainty are governed by both the variability and parameter uncertainty in their probability distributions. A natural and consistent way to arrive at importance analysis results in such cases would be a three-loop nested Monte Carlo (MC) sampling strategy, in which the parameters are sampled in the outer loop and the inputs are sampled in the inner nested double-loop. However, the computational effort of this procedure is often prohibitive for engineering problem. This paper, therefore, proposes a newly efficient algorithm for importance analysis of the inputs in the presence of parameter uncertainty. By introducing a ‘surrogate sampling probability density function (SS-PDF)’ and incorporating the single-loop MC theory into the computation, the proposed algorithm can reduce the original three-loop nested MC computation into a single-loop one in terms of model evaluation, which requires substantially less computational effort. Methods for choosing proper SS-PDF are also discussed in the paper. The efficiency and robustness of the proposed algorithm have been demonstrated by results of several examples.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2015.1088099 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:13:p:3065-3077
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2015.1088099
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().