EconPapers    
Economics at your fingertips  
 

Multi-objective optimisation and decision-making of space station logistics strategies

Yue-he Zhu and Ya-zhong Luo

International Journal of Systems Science, 2016, vol. 47, issue 13, 3132-3148

Abstract: Space station logistics strategy optimisation is a complex engineering problem with multiple objectives. Finding a decision-maker-preferred compromise solution becomes more significant when solving such a problem. However, the designer-preferred solution is not easy to determine using the traditional method. Thus, a hybrid approach that combines the multi-objective evolutionary algorithm, physical programming, and differential evolution (DE) algorithm is proposed to deal with the optimisation and decision-making of space station logistics strategies. A multi-objective evolutionary algorithm is used to acquire a Pareto frontier and help determine the range parameters of the physical programming. Physical programming is employed to convert the four-objective problem into a single-objective problem, and a DE algorithm is applied to solve the resulting physical programming-based optimisation problem. Five kinds of objective preference are simulated and compared. The simulation results indicate that the proposed approach can produce good compromise solutions corresponding to different decision-makers’ preferences.

Date: 2016
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2015.1091898 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:13:p:3132-3148

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2015.1091898

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:47:y:2016:i:13:p:3132-3148