Adaptive neural network tracking control for a class of switched stochastic pure-feedback nonlinear systems with backlash-like hysteresis
Ben Niu,
Tian Qin and
Xiaodong Fan
International Journal of Systems Science, 2016, vol. 47, issue 14, 3378-3393
Abstract:
In this paper, an adaptive neural network tracking control approach is proposed for a class of switched stochastic pure-feedback nonlinear systems with backlash-like hysteresis. In the design procedure, an affine variable is constructed, which avoids the use of the mean value theorem, and the additional first-order low-pass filter is employed to deal with the problem of explosion of complexity. Then, a common Lyapunov function and a state feedback controller are explicitly obtained for all subsystems. It is proved that the proposed controller that guarantees all signals in the closed-loop system are semi-globally uniformly ultimately bounded and the tracking error remains an adjustable neighbourhood of the origin. Finally, simulation results show the effectiveness of the presented control design approach.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2016.1151962 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:14:p:3378-3393
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2016.1151962
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().