Multi-criteria decision-making method based on a cross-entropy with interval neutrosophic sets
Zhang-peng Tian,
Hong-yu Zhang,
Jing Wang,
Jian-qiang Wang and
Xiao-hong Chen
International Journal of Systems Science, 2016, vol. 47, issue 15, 3598-3608
Abstract:
In this paper, two optimisation models are established to determine the criterion weights in multi-criteria decision-making situations where knowledge regarding the weight information is incomplete and the criterion values are interval neutrosophic numbers. The proposed approach combines interval neutrosophic sets and TOPSIS, and the closeness coefficients are expressed as interval numbers. Furthermore, the relative likelihood-based comparison relations are constructed to determine the ranking of alternatives. A fuzzy cross-entropy approach is proposed to calculate the discrimination measure between alternatives and the absolute ideal solutions, after a transformation operator has been developed to convert interval neutrosophic numbers into simplified neutrosophic numbers. Finally, an illustrative example is provided, and a comparative analysis is conducted between the approach developed in this paper and other existing methods, to verify the feasibility and effectiveness of the proposed approach.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2015.1102359 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:15:p:3598-3608
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2015.1102359
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().