EconPapers    
Economics at your fingertips  
 

Voronoi-based localisation algorithm for mobile sensor networks

Zixiao Guan, Yongtao Zhang, Baihai Zhang and Lijing Dong

International Journal of Systems Science, 2016, vol. 47, issue 15, 3688-3695

Abstract: Localisation is an essential and important part in wireless sensor networks (WSNs). Many applications require location information. So far, there are less researchers studying on mobile sensor networks (MSNs) than static sensor networks (SSNs). However, MSNs are required in more and more areas such that the number of anchor nodes can be reduced and the location accuracy can be improved. In this paper, we firstly propose a range-free Voronoi-based Monte Carlo localisation algorithm (VMCL) for MSNs. We improve the localisation accuracy by making better use of the information that a sensor node gathers. Then, we propose an optimal region selection strategy of Voronoi diagram based on VMCL, called ORSS-VMCL, to increase the efficiency and accuracy for VMCL by adapting the size of Voronoi area during the filtering process. Simulation results show that the accuracy of these two algorithms, especially ORSS-VMCL, outperforms traditional MCL.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2015.1116639 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:15:p:3688-3695

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2015.1116639

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:47:y:2016:i:15:p:3688-3695