Coordinated orbit-tracking control of second-order non-linear agents with directed communication topologies
Y.-Y. Chen,
Y. Zhang,
C.-L. Liu and
P. Wei
International Journal of Systems Science, 2016, vol. 47, issue 16, 3929-3939
Abstract:
This paper deals with two-dimensional and three-dimensional cooperative control of multiple agents formation tracking a set of given closed orbits, where each agent has intrinsic second-order non-linear dynamics and the communication topology among agents is directed. By using our previous curve extension method, the cooperative control system can be regarded as a cascade system composed of the orbit-tracking subsystem and the formation subsystem with the orbit-tracking error as input. A novel solution is established by separatively designing the orbit-tracking control law and the formation control protocol ignoring the perturbation at first and then applying input-to-state stability theory to analyse the asymptotic stability of the cascade system. It is shown that the closed-loop system is asymptotic stability if the directed communication topology contains a directed spanning tree. The effectiveness of the analytical results is verified by numerical simulations.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2016.1139759 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:16:p:3929-3939
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2016.1139759
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().