UIO design for singular delayed LPV systems with application to actuator fault detection and isolation
Amir Hossein Hassanabadi,
Masoud Shafiee and
Vicenc Puig
International Journal of Systems Science, 2016, vol. 47, issue 1, 107-121
Abstract:
In this paper, the unknown input observer (UIO) design for singular delayed linear parameter varying (LPV) systems is considered regarding its application to actuator fault detection and isolation. The design procedure assumes that the LPV system is represented in the polytopic framework. Existence and convergence conditions for the UIO are established. The design procedure is formulated by means of linear matrix inequalities (LMIs). Actuator fault detection and isolation is based on using the UIO approach for designing a residual generator that is completely decoupled from unknown inputs and exclusively sensitive to faults. Fault isolation is addressed considering two different strategies: dedicated and generalised bank of observers’ schemes. The applicability of these two schemes for the fault isolation is discussed. An open flow canal system is considered as a case study to illustrate the performance and usefulness of the proposed fault detection and isolation method in different fault scenarios.
Date: 2016
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2015.1029567 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:1:p:107-121
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2015.1029567
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().