Particle filter with one-step randomly delayed measurements and unknown latency probability
Yonggang Zhang,
Yulong Huang,
Ning Li and
Lin Zhao
International Journal of Systems Science, 2016, vol. 47, issue 1, 209-221
Abstract:
In this paper, a new particle filter is proposed to solve the nonlinear and non-Gaussian filtering problem when measurements are randomly delayed by one sampling time and the latency probability of the delay is unknown. In the proposed method, particles and their weights are updated in Bayesian filtering framework by considering the randomly delayed measurement model, and the latency probability is identified by maximum likelihood criterion. The superior performance of the proposed particle filter as compared with existing methods and the effectiveness of the proposed identification method of latency probability are both illustrated in two numerical examples concerning univariate non-stationary growth model and bearing only tracking.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2015.1056272 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:1:p:209-221
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2015.1056272
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().