Adaptive neural control for cooperative path following of marine surface vehicles: state and output feedback
H. Wang,
D. Wang and
Z.H. Peng
International Journal of Systems Science, 2016, vol. 47, issue 2, 343-359
Abstract:
This paper addresses the cooperative path-following problem of multiple marine surface vehicles subject to dynamical uncertainties and ocean disturbances induced by unknown wind, wave and ocean current. The control design falls neatly into two parts. One is to steer individual marine surface vehicle to track a predefined path and the other is to synchronise the along-path speed and path variables under the constraints of an underlying communication network. Within these two formulations, a robust adaptive path-following controller is first designed for individual vehicles based on backstepping and neural network techniques. Then, a decentralised synchronisation control law is derived by means of consensus on along-path speed and path variables based on graph theory. The distinct feature of this design lies in that synchronised path following can be reached for any undirected connected communication graphs without accurate knowledge of the model. This result is further extended to the output feedback case, where an observer-based cooperative path-following controller is developed without measuring the velocity of each vehicle. For both designs, rigorous theoretical analysis demonstrate that all signals in the closed-loop system are semi-global uniformly ultimately bounded. Simulation results validate the performance and robustness improvement of the proposed strategy.
Date: 2016
References: Add references at CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2015.1056274 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:2:p:343-359
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2015.1056274
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().