EconPapers    
Economics at your fingertips  
 

Fault detection for a class of uncertain nonlinear Markovian jump stochastic systems with mode-dependent time delays and sensor saturation

Guangming Zhuang, Yongmin Li and Ze Li

International Journal of Systems Science, 2016, vol. 47, issue 7, 1514-1532

Abstract: This paper considers the problem of robust H∞ fault detection for a class of uncertain nonlinear Markovian jump stochastic systems with mode-dependent time delays and sensor saturation. We aim to design a linear mode-dependent H∞ fault detection filter that ensures, the fault detection system is not only stochastically asymptotically stable in the large, but also satisfies a prescribed H∞-norm level for all admissible uncertainties. By using the Lyapunov stability theory and generalised Itô formula, some novel delay-dependent sufficient conditions in terms of linear matrix inequality are proposed to guarantee the existence of the desired fault detection filter. Explicit expression of the desired mode-dependent linear filter parameters is characterised by matrix decomposition, congruence transformation and convex optimisation technique. Sector condition method is utilised to deal with sensor saturation, a definite relation of sector condition parameters with fault detection system robustness against disturbances and sensitivity to faults is put forward, and weighting fault signal approach is employed to improve the performance of the fault detection system. A simulation example and an industrial nonisothermal continuous stirred tank reactor system are utilised to verify the effectiveness and usefulness of the proposed method.

Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2014.938786 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:7:p:1514-1532

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2014.938786

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:47:y:2016:i:7:p:1514-1532