A robust and high-performance queue management controller for large round trip time networks
Ladan Khoshnevisan and
Farzad R. Salmasi
International Journal of Systems Science, 2016, vol. 47, issue 7, 1586-1597
Abstract:
Congestion management for transmission control protocol is of utmost importance to prevent packet loss within a network. This necessitates strategies for active queue management. The most applied active queue management strategies have their inherent disadvantages which lead to suboptimal performance and even instability in the case of large round trip time and/or external disturbance. This paper presents an internal model control robust queue management scheme with two degrees of freedom in order to restrict the undesired effects of large and small round trip time and parameter variations in the queue management. Conventional approaches such as proportional integral and random early detection procedures lead to unstable behaviour due to large delay. Moreover, internal model control–Smith scheme suffers from large oscillations due to the large round trip time. On the other hand, other schemes such as internal model control–proportional integral and derivative show excessive sluggish performance for small round trip time values. To overcome these shortcomings, we introduce a system entailing two individual controllers for queue management and disturbance rejection, simultaneously. Simulation results based on Matlab/Simulink and also Network Simulator 2 (NS2) demonstrate the effectiveness of the procedure and verify the analytical approach.
Date: 2016
References: Add references at CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2014.941959 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:7:p:1586-1597
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2014.941959
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().