On integral input-to-state stability for a feedback interconnection of parameterised discrete-time systems
N. Noroozi,
A. Khayatian,
S. Ahmadizadeh and
H.R. Karimi
International Journal of Systems Science, 2016, vol. 47, issue 7, 1598-1614
Abstract:
This paper addresses integral input-to-state stability (iISS) for a feedback interconnection of parameterised discrete-time systems involving two subsystems. Particularly, we give a construction for a smooth iISS Lyapunov function for the whole system from the sum of nonlinearly weighted Lyapunov functions of individual subsystems. Motivations for such a construction are given. We consider two main cases. The first one investigates iISS for the whole system when both subsystems are iISS. The second one gives iISS for the interconnected system when one of subsystems is allowed to be input-to-state stable. The approach is also valid for both discrete-time cascades and a feedback interconnection of iISS and static systems. Examples are given to illustrate the effectiveness of the results.
Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2014.942242 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:7:p:1598-1614
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2014.942242
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().