EconPapers    
Economics at your fingertips  
 

Exploiting the interpretability and forecasting ability of the RBF-AR model for nonlinear time series

Min Gan, C.L. Philip Chen, Long Chen and Chun-Yang Zhang

International Journal of Systems Science, 2016, vol. 47, issue 8, 1868-1876

Abstract: In this paper, we explore the radial basis function network-based state-dependent autoregressive (RBF-AR) model by modelling and forecasting an ecological time series: the famous Canadian lynx data. The interpretability of the state-dependent coefficients of the RBF-AR model is studied. It is found that the RBF-AR model can account for the phenomena of phase and density dependencies in the Canadian lynx cycle. The post-sample forecasting performance of one-step and two-step ahead predictors of the RBF-AR model is compared with that of other competitive time-series models including various parametric and non-parametric models. The results show the usefulness of the RBF-AR model in this ecological time-series modelling.

Date: 2016
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2014.955552 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:47:y:2016:i:8:p:1868-1876

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2014.955552

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:47:y:2016:i:8:p:1868-1876