fuzzy control of semi-Markov jump nonlinear systems under σ-error mean square stability
Ting Yang,
Lixian Zhang and
Hak-Keung Lam
International Journal of Systems Science, 2017, vol. 48, issue 11, 2291-2299
Abstract:
This paper is concerned with the problem of time-varying H∞ fuzzy control for a class of semi-Markov jump nonlinear systems in the sense of σ-error mean square stability. The nonlinear plant is described via the Takagi–Sugeno fuzzy model. By defining a time-varying mode-dependent Lyapunov function, a set of sufficient stability and stabilisation criteria for non-disturbance case is first derived and then applied to the investigation of H∞ performance analysis and H∞ fuzzy controller design problems of semi-Markov jump nonlinear systems. Different from the traditional stochastic switching system framework, the probability density function of sojourn time is exploited to circumvent the complex computation of transition probabilities. The derived conditions can cover the time-invariant mode-dependent and time-invariant mode-independent H∞ fuzzy control schemes as special cases. A classic cart-pendulum system is presented to demonstrate the effectiveness and advantages of the proposed theoretical results.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2017.1315982 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:48:y:2017:i:11:p:2291-2299
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2017.1315982
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().