EconPapers    
Economics at your fingertips  
 

Adaptive neural prescribed performance control for a class of strict-feedback stochastic nonlinear systems under arbitrary switchings

Wenjie Si, Xunde Dong and Feifei Yang

International Journal of Systems Science, 2017, vol. 48, issue 11, 2300-2310

Abstract: This paper presents an adaptive neural tracking control scheme for strict-feedback stochastic nonlinear systems with guaranteed transient and steady-state performance under arbitrary switchings. First, by utilising the prescribed performance control, the prescribed tracking control performance can be ensured, while the requirement for the initial error is removed. Second, radial basis function neural networks approximation are used to handle unknown nonlinear functions and stochastic disturbances. At last, by using the common Lyapunov function method and the backstepping technique, a common adaptive neural controller is constructed. The designed controller overcomes the problem of the over-parameterisation, and further alleviates the computational burden. Under the proposed common adaptive controller, all the signals in the closed-loop system are 4-Moment (or 2 Moment) semi-globally uniformly ultimately bounded, and the prescribed tracking control performance are guaranteed under arbitrary switchings. Three examples are presented to further illustrate the effectiveness of the proposed approach.

Date: 2017
References: Add references at CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2017.1316880 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:48:y:2017:i:11:p:2300-2310

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2017.1316880

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:48:y:2017:i:11:p:2300-2310