Learning control for discrete-time nonlinear systems with sensor saturation and measurement noises
Dong Shen and
Chao Zhang
International Journal of Systems Science, 2017, vol. 48, issue 13, 2764-2778
Abstract:
The iterative learning control (ILC) is investigated for a class of nonlinear systems with measurement noises where the output is subject to sensor saturation. An ILC algorithm is introduced based on the measured output information rather than the actual output signal. A decreasing sequence is also incorporated into the learning algorithm to ensure a stable convergence under stochastic noises. It is strictly proved with the help of the stochastic approximation technique that the input sequence converges to the desired input almost surely along the iteration axis. Illustrative simulations are exploited to verify the effectiveness of the proposed algorithm.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2017.1344894 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:48:y:2017:i:13:p:2764-2778
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2017.1344894
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().