Applying elliptic curve cryptography to a chaotic synchronisation system: neural-network-based approach
Feng-Hsiag Hsiao
International Journal of Systems Science, 2017, vol. 48, issue 14, 3044-3059
Abstract:
In order to obtain double encryption via elliptic curve cryptography (ECC) and chaotic synchronisation, this study presents a design methodology for neural-network (NN)-based secure communications in multiple time-delay chaotic systems. ECC is an asymmetric encryption and its strength is based on the difficulty of solving the elliptic curve discrete logarithm problem which is a much harder problem than factoring integers. Because it is much harder, we can get away with fewer bits to provide the same level of security. To enhance the strength of the cryptosystem, we conduct double encryption that combines chaotic synchronisation with ECC. According to the improved genetic algorithm, a fuzzy controller is synthesised to realise the exponential synchronisation and achieves optimal H∞ performance by minimising the disturbances attenuation level. Finally, a numerical example with simulations is given to demonstrate the effectiveness of the proposed approach.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2017.1364446 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:48:y:2017:i:14:p:3044-3059
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2017.1364446
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().