EconPapers    
Economics at your fingertips  
 

Consensus of linear multi-agent systems with communication delays by using the information of second-order neighbours under intermittent communication topology

Xia Xiao and Xiaowu Mu

International Journal of Systems Science, 2017, vol. 48, issue 1, 200-208

Abstract: This paper investigates the consensus of identical linear multi-agent systems with aperiodic intermittent communication topology by using the information of second-order neighbours (two-hop neighbourhood). The protocols based on two-hop neighbourhood information and intermittent communication topology are designed, under which consensus is reached. If the communication rate is larger than the corresponding threshold value, the networks will accelerate consensus by using two-hop neighbourhood information. By means of switching systems theory and Lyapunov–Razumikhin theorem, consensus of multi-agent systems with communication delays and intermittent communication topology is reached by two-hop neighbourhood information. Finally, simulation examples are provided to show the effectiveness of the theoretical results.

Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2016.1218571 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:48:y:2017:i:1:p:200-208

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2016.1218571

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:48:y:2017:i:1:p:200-208