An enhanced linear Kalman filter (EnLKF) algorithm for parameter estimation of nonlinear rational models
Quanmin Zhu,
Dingli Yu and
Dongya Zhao
International Journal of Systems Science, 2017, vol. 48, issue 3, 451-461
Abstract:
In this study, an enhanced Kalman Filter formulation for linear in the parameters models with inherent correlated errors is proposed to build up a new framework for nonlinear rational model parameter estimation. The mechanism of linear Kalman filter (LKF) with point data processing is adopted to develop a new recursive algorithm. The novelty of the enhanced linear Kalman filter (EnLKF in short and distinguished from extended Kalman filter (EKF)) is that it is not formulated from the routes of extended Kalman Filters (to approximate nonlinear models by linear approximation around operating points through Taylor expansion) and also it includes LKF as its subset while linear models have no correlated errors in regressor terms. No matter linear or nonlinear models in representing a system from measured data, it is very common to have correlated errors between measurement noise and regression terms, the EnLKF provides a general solution for unbiased model parameter estimation without extra cost to convert model structure. The associated convergence is analysed to provide a quantitative indicator for applications and reference for further research. Three simulated examples are selected to bench-test the performance of the algorithm. In addition, the style of conducting numerical simulation studies provides a user-friendly step by step procedure for the readers/users with interest in their ad hoc applications. It should be noted that this approach is fundamentally different from those using linearisation to approximate nonlinear models and then conduct state/parameter estimate.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2016.1186243 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:48:y:2017:i:3:p:451-461
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2016.1186243
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().