Exponential mean-square stability of the θ-method for neutral stochastic delay differential equations with jumps
Haoyi Mo,
Xueyan Zhao and
Feiqi Deng
International Journal of Systems Science, 2017, vol. 48, issue 3, 462-470
Abstract:
The exponential mean-square stability of the θ-method for neutral stochastic delay differential equations (NSDDEs) with jumps is considered. With some monotone conditions, the trivial solution of the equation is proved to be exponentially mean-square stable. If the drift coefficient and the parameters satisfy more strengthened conditions, for the constrained stepsize, it is shown that the θ-method can preserve the exponential mean-square stability of the trivial solution for θ ∈ [0, 1]. Since θ-method covers the commonly used Euler–Maruyama (EM) method and the backward Euler–Maruyama (BEM) method, the results are valid for the above two methods. Moreover, they can adapt to the NSDDEs and the stochastic delay differential equations (SDDEs) with jumps. Finally, a numerical example illustrates the effectiveness of the theoretical results.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2016.1186245 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:48:y:2017:i:3:p:462-470
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2016.1186245
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().