Tracking control of a marine surface vessel with full-state constraints
Zhao Yin,
Wei He and
Chenguang Yang
International Journal of Systems Science, 2017, vol. 48, issue 3, 535-546
Abstract:
In this paper, a trajectory tracking control law is proposed for a class of marine surface vessels in the presence of full-state constraints and dynamics uncertainties. A barrier Lyapunov function (BLF) based control is employed to prevent states from violating the constraints. Neural networks are used to approximate the system uncertainties in the control design, and the control law is designed by using the Moore-Penrose inverse. The proposed control is able to compensate for the effects of full-state constraints. Meanwhile, the signals in the closed-loop system are guaranteed to be semiglobally uniformly bounded, with the asymptotic tracking being achieved. Finally, the performance of the proposed control has been tested and verified by simulation studies.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2016.1193255 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:48:y:2017:i:3:p:535-546
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2016.1193255
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().