EconPapers    
Economics at your fingertips  
 

Tracking control of a marine surface vessel with full-state constraints

Zhao Yin, Wei He and Chenguang Yang

International Journal of Systems Science, 2017, vol. 48, issue 3, 535-546

Abstract: In this paper, a trajectory tracking control law is proposed for a class of marine surface vessels in the presence of full-state constraints and dynamics uncertainties. A barrier Lyapunov function (BLF) based control is employed to prevent states from violating the constraints. Neural networks are used to approximate the system uncertainties in the control design, and the control law is designed by using the Moore-Penrose inverse. The proposed control is able to compensate for the effects of full-state constraints. Meanwhile, the signals in the closed-loop system are guaranteed to be semiglobally uniformly bounded, with the asymptotic tracking being achieved. Finally, the performance of the proposed control has been tested and verified by simulation studies.

Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2016.1193255 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:48:y:2017:i:3:p:535-546

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2016.1193255

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:48:y:2017:i:3:p:535-546