On the theory of flexible neural networks – Part I: a survey paper
Yazdan Bavafa-Toosi
International Journal of Systems Science, 2017, vol. 48, issue 3, 649-658
Abstract:
Although flexible neural networks (FNNs) have been used more successfully than classical neural networks (CNNs) in many industrial applications, nothing is rigorously known about their properties. In fact they are not even well known to the systems and control community. In the first part of this paper, existing structures of and results on FNNs are surveyed. In the second part FNNs are examined in a theoretical framework. As a result, theoretical evidence is given for the superiority of FNNs over CNNs and further properties of the former are developed. More precisely, several fundamental properties of feedforward and recurrent FNNs are established. This includes the universal approximation capability, minimality, controllability, observability, and identifiability. In the broad sense, the results of this paper help that general use of FNNs in systems and control theory and applications be based on firm theoretical foundations. Theoretical analysis and synthesis of FNN-based systems thus become possible. The paper is concluded by a collection of topics for future work.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2016.1206989 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:48:y:2017:i:3:p:649-658
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2016.1206989
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().