Adaptive synchronisation of unknown nonlinear networked systems with prescribed performance
Hashim. A. Hashim,
Sami El-Ferik and
Frank L. Lewis
International Journal of Systems Science, 2017, vol. 48, issue 4, 885-898
Abstract:
This paper proposes an adaptive tracking control with prescribed performance function for distributive cooperative control of highly nonlinear multi-agent systems. The use of such approach confines the tracking error within a large predefined set to a predefined smaller set. The key idea is to transform the constrained system into unconstrained one through the transformation of the output error. Agents’ dynamics are assumed unknown, and the controller is developed for a strongly connected structured network. The proposed controller allows all agents to follow the trajectory of the leader node, while satisfying the necessary dynamic requirements. The proposed approach guarantees uniform ultimate boundedness for the transformed error as well as a bounded adaptive estimate of the unknown parameters and dynamics. Simulations include two examples to validate the robustness and smoothness of the proposed controller against highly nonlinear heterogeneous multi-agent system with uncertain time-variant parameters and external disturbances.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2016.1226984 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:48:y:2017:i:4:p:885-898
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2016.1226984
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().