Vibration control of a flexible aerial refuelling hose with input saturation
Zhijie Liu,
Jinkun Liu and
Wei He
International Journal of Systems Science, 2017, vol. 48, issue 5, 971-983
Abstract:
In this study, we consider a boundary control problem of a flexible aerial refuelling hose in the presence of input saturation. To provide an accurate and concise representation of the hose's behaviour, the flexible hose is modelled as a distributed parameter system described by partial differential equations (PDEs). By using the backstepping method, a boundary control scheme is proposed based on the original PDEs to regulate the hose's vibration. An auxiliary system based on a smooth hyperbolic function and a Nussbaum function is designed to handle the effect of the input saturation. Then based on Lyapunov's direct method, the state of the system is proven to converge to a small neighbourhood of zero by appropriately choosing design parameters. Finally, the results are illustrated using numerical simulations for control performance verification.
Date: 2017
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2016.1226983 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:48:y:2017:i:5:p:971-983
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2016.1226983
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().