On identification of Hammerstein and Wiener model with application to virtualised software system
Dharma Aryani,
Liuping Wang and
Tharindu Patikirikorala
International Journal of Systems Science, 2017, vol. 48, issue 6, 1146-1161
Abstract:
This paper proposes a system identification method for estimating virtualised software system dynamics within the framework of a Hammerstein–Wiener model. Building on the authors’ previous work in identification and control of the software systems, the approach utilises frequency sampling filter structure to describe the linear dynamics and B-spline curve functions for the inverse static output nonlinearity. Furthermore, the issue on parameter selection for B-spline model approximation of scatter data is addressed by using a data clustering method. An experimental test-bed of virtualised software system is established to generate real observational data which are used to confirm the performance of the proposed approach. The identification results have shown that the model efficacy is increased with the proposed approach because the dimension of the nonlinear model can be significantly reduced while maintaining the desired accuracy.
Date: 2017
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2016.1244303 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:48:y:2017:i:6:p:1146-1161
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2016.1244303
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().