Maximum correntropy unscented filter
Xi Liu,
Badong Chen,
Bin Xu,
Zongze Wu and
Paul Honeine
International Journal of Systems Science, 2017, vol. 48, issue 8, 1607-1615
Abstract:
The unscented transformation (UT) is an efficient method to solve the state estimation problem for a non-linear dynamic system, utilising a derivative-free higher-order approximation by approximating a Gaussian distribution rather than approximating a non-linear function. Applying the UT to a Kalman filter type estimator leads to the well-known unscented Kalman filter (UKF). Although the UKF works very well in Gaussian noises, its performance may deteriorate significantly when the noises are non-Gaussian, especially when the system is disturbed by some heavy-tailed impulsive noises. To improve the robustness of the UKF against impulsive noises, a new filter for non-linear systems is proposed in this work, namely the maximum correntropy unscented filter (MCUF). In MCUF, the UT is applied to obtain the prior estimates of the state and covariance matrix, and a robust statistical linearisation regression based on the maximum correntropy criterion is then used to obtain the posterior estimates of the state and covariance matrix. The satisfying performance of the new algorithm is confirmed by two illustrative examples.
Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2016.1277407 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:48:y:2017:i:8:p:1607-1615
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2016.1277407
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().