EconPapers    
Economics at your fingertips  
 

Delay-partitioning approach to stability analysis of state estimation for neutral-type neural networks with both time-varying delays and leakage term via sampled-data control

R. Samidurai, S. Rajavel, Jinde Cao, Ahmad Alsaedi, Fuad Alsaadi and Bashir Ahmad

International Journal of Systems Science, 2017, vol. 48, issue 8, 1752-1765

Abstract: This paper mainly focuses on further improved stability analysis of state estimation for neutral-type neural networks with both time-varying delays and leakage delay via sampled-data control by delay-partitioning approach. Instead of the continuous measurement, the sampled measurement is used to estimate the neuron states and a sampled-data estimator is constructed. To fully use the sawtooth structure characteristics of the sampling input delay, sufficient conditions are derived such that the system governing the error dynamics is asymptotically stable. The design method of the desired state estimator is proposed. We construct a suitable Lyapunov–Krasovskii functional (LKF) with triple and quadruple integral terms then by using a novel free-matrix-based integral inequality (FMII) including well-known integral inequalities as special cases. Moreover, the design procedure can be easily achieved by solving a set of linear matrix inequalities (LMIs), which can be easily facilitated by using the standard numerical software. Finally, two numerical examples are given to demonstrate the effectiveness of the proposed results.

Date: 2017
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2017.1282060 (text/html)
Access to full text is restricted to subscribers.

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:48:y:2017:i:8:p:1752-1765

Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20

DOI: 10.1080/00207721.2017.1282060

Access Statistics for this article

International Journal of Systems Science is currently edited by Visakan Kadirkamanathan

More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().

 
Page updated 2025-03-20
Handle: RePEc:taf:tsysxx:v:48:y:2017:i:8:p:1752-1765