Finite-time stabilisation for a class of output-constrained nonholonomic systems with its application
Fangzheng Gao,
Yuqiang Wu,
Hongsheng Li and
Yanhong Liu
International Journal of Systems Science, 2018, vol. 49, issue 10, 2155-2169
Abstract:
This paper studies the problem of finite-time stabilisation for a class of uncertain nonholonomic systems in chained form with output constraint. A nonlinear mapping is first introduced to transform the output-constrained system into a new unconstrained one. Then, by employing the adding a power integrator technique and switching control strategy, a state feedback controller is successfully constructed to render that the states of closed-loop system converge to zero in a finite time without violation of the constraint. As an application of the proposed theoretical results, the problem of finite-time parking a unicycle-type mobile robot is tackled. Simulation results are given to demonstrate the effectiveness of the proposed method.
Date: 2018
References: Add references at CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
http://hdl.handle.net/10.1080/00207721.2018.1494863 (text/html)
Access to full text is restricted to subscribers.
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:taf:tsysxx:v:49:y:2018:i:10:p:2155-2169
Ordering information: This journal article can be ordered from
http://www.tandfonline.com/pricing/journal/TSYS20
DOI: 10.1080/00207721.2018.1494863
Access Statistics for this article
International Journal of Systems Science is currently edited by Visakan Kadirkamanathan
More articles in International Journal of Systems Science from Taylor & Francis Journals
Bibliographic data for series maintained by Chris Longhurst ().